INTEGRAL DEPENDENT ON PARAMETER "E" IN CLASSICAL NON-ISOTHERMAL KINETICS WITH LINEAR HEATING RATE, II.

E. Urbanovici* and E. Segal**

*RESEARCH INSTITUTE FOR ELECTROTECHNICS, SFINTU GHEORGHE BRANCH, STR. JÓZSEF ATTLLA NR.4, SFINTU GHEORGHE, JUDEIUL COVASNA, ROMANIA
**DEPARTMENT OF PHYSICAL CHEMISTRY, FACULTY OF CHEMISTRY, UNIVERSITY OF BUCHAREST, BULEVARDUL REPUBLICII 13, BUCHAREST, ROMANIA
(Received January 25, 1990)
In a previous paper [1] the derivative with respect to the activation energy E of the integral

$$
\begin{equation*}
I(T, E)=\int_{0}^{T} e^{-\frac{E}{R y}} d y \tag{1}
\end{equation*}
$$

was considered.
Taking into account the temperature dependence of the preexponential factor

$$
\begin{equation*}
A=A_{r} T^{r} \quad(r=\text { const }) \tag{2}
\end{equation*}
$$

this note deals with the derivative with respect to E of the integral:

$$
\begin{equation*}
I(T, E, r)=\int_{0}^{T} y^{r} e^{-\frac{E}{R y}} d y \tag{3}
\end{equation*}
$$

To obtain the derivative $\frac{\partial I(T, E, r)}{\partial E}$ the following relationships [2]

$$
\begin{gather*}
I(T, E, r)=\frac{R T^{r+2}}{E} e^{-\frac{E}{R T}} Q_{r}\left(\frac{E}{R T}\right) \tag{4}\\
Q_{r}^{\prime}\left(\frac{E}{R T}\right)-Q_{r}\left(\frac{E}{R T}\right)\left(1+\frac{r+2}{\frac{E}{R T}}\right)+1=0 \tag{5}
\end{gather*}
$$

will be used.
Relationship (5) is obtained taking the derivative with respect to T of relationship (4) and $Q^{\prime} r\left(\frac{E}{R T}\right)$ means derivative of Q_{r} with respect to $-\frac{E}{R T}$ From relationship (4) one obtains:

$$
\begin{gather*}
\frac{\partial I(T, E, r)}{\partial E}= \\
=-\frac{R T^{r+2}}{E^{2}} e^{-\frac{E}{R T}} Q_{r}\left(\frac{E}{R T}\right)-\frac{T^{r+1}}{E} e^{-\frac{E}{R T}} Q_{r}\left(\frac{E}{R T}\right)+\frac{T^{r+1}}{E} e^{-\frac{E}{R T}} Q^{\prime} r\left(\frac{E}{R T}\right) \tag{6}
\end{gather*}
$$

The substitution of $Q^{\prime} r\left(\frac{E}{R T}\right)$ from (5) in (6) leads to:

$$
\begin{equation*}
\frac{\partial I(T, E, r)}{\partial E}=\frac{R T^{r+2}}{E^{2}} e^{-\frac{E}{R T}}\left((r+1) Q_{r}\left(\frac{E}{R T}\right)-\frac{E}{R T}\right) \tag{7}
\end{equation*}
$$

It is easy to see that for $r=0$ relationship (7) turns into relationship (12) from reference [1]. As far as the form of the function $\operatorname{Cr}\left(\frac{E}{R T}\right)$ is concerned, among the approximations considered in reference [2] we mention in these note only one, namely

$$
\begin{equation*}
Q r(x) \cong \frac{x^{2}+x(4+r)}{x^{2}+x(6+2 r)+(r+3)(r+2)} \tag{8}
\end{equation*}
$$

References

1 E. Urbanovici and E. Segal, J. Thermal Anal., 35 (1989) 215.
2 E. Urbanovici and E. Segal, Thermochim. Acta, in print

